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The radial distribution function probed by x-ray 
absorption spectroscopy 
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Dipaxtimenlo di Fisiw, Univenita degli Studi dell' Aquila, ViaVetoio. 67010 Coppito. L' Aquila, 
Italy 

Received 16 May 1994, in final form 6 August 1994 

Abstract Structural information on the pair distribution function pz(r)  for single-component 
disordered systems is usually obtained from the experimental structure factor S(k) measured by 
diffraction techniques. Complementmy short-range information can be provided by the analysis 
of the extended x-ray absorption fine structure x(k) associated with a d n  x-ray absorption 
edge. The intrinsic differences in the nature of the x(k) and S(k)  signals are discussed and 
particular effort is devoted to connecting the ~ ( k )  signal with usual quantities familiar to the 
distribution function theory in disordered malter. An example of the short-range x ( k )  sensitivity 
is presented showing sipals associated with gz(r )  functions of liquid Cu at I150 T and 1300 'C. 
The necessity to fit realisticgz(r) models to ULAFS spectrasatisfying bath long-distance behaviour 
and the compressibility sum rule is emphasized. A method to combine these constraints and 
previous informakion~on 820)  with available x ( k )  data is proposed q d  applied to recent BAFS 
data on liquid palladium. 

1. S(k) and x(k)  

Diffraction techniques [l, 21 are certainly the major sousce of information to probe 
and understand pair correlations in disordered solids or liquids [3]. The object of the 
measurement is the structure factor S(k) defined, for a monatomic system, by 

S(k) = 1 + - (gZ(r) - 1)r sin(kr) dr 4F r 
where p is the density of the material, and k is the scattering wavevector modulus 
k = 4n/Asin(e/Z). S(k) contains information on the radial distributiod function &(r) 
defined by the ratio between the average radial density, at distance r from any single 
atom, and the average macroscopic density. In the absence of long-range order the spatial 
correlations decay and the following well known long-range limit holds 

lim gz(r)  = 1 
r+m 

The number of atoms contained in a shell is obtained by integrating the function 4nprzg2(r) 
in the appropriate distance interval. Several methods are available to invert equation (1) 
to obtain an experimental determination of the gZ(r). They range from the simple Fourier 
transformation technique [l], to the full three-dimensional modelling obtained by the reverse 
Monte Carlo (RMC) method [4]. 

The structural information contained in the S(k) is complete and includes short- 
range as well as medium- and long-range information. The latter becomes evident upon 
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crystallization of the specimen with the dramatic modification of the diffraction pattern from 
diffuse rings to sharp rings. 

The interest in understanding disordered systems has long stimulated the development 
of complementary structural techniques. Among these x-ray absorption spectroscopy (XAS) 

[S, 61 as acquired a central role due to the atomic selectivity. The structural information 
is contained in the oscillating behaviour of the absorption cross-section affecting the first 
few hundreds of eV above any deep-core-level excitation threshold. The so-called extended 
x-ray absorption fine structure (EXAFS) is defined as the relative variation of the absorption 
cross-section, with respect to the atomic contribution u&E), normalized by the atomic cross- 
section of the selected edge uo(E), and is given by ~ ( k )  = [ o ( E )  - u&F)]/uo(E), where 
k = .,/-/E is the modulus of the photoelectron wavevector (EO is the threshold 
energy). 

~ ( k )  is known to be due to inte~erence effects in the transition matrix element associated 
with the presence of neighbouring atoms. The theoretical understanding of the EXAFS has 
been the subject of many advances in the last few years 171, that allow us nowadays to 
perform a reliable data analysis based on theoretical standards [8]. 

For a given gz(r) the associated x ( k )  signal can be calculated in a straightforward 
manner using the equation 

m 

x ( k )  = 1 4zr2p gz(r) y”(r, k )  dr (3) 

where the function y”(r. k )  is the EXAFS signal associated with the presence of a single 
atom at distance r from the photoabsorber. y‘’’(r, k )  represents the kernel of the integral 
equation relating g&) to ,y(k), and is equivalent to the sine function in equation (I), but, 
unfortunately, its exact shape depends upon the approximations in the theory. For this 
reason different expressions have been reported in the literature and this has often generated 
confusion. In fact there is no agreement yet in the scientific community on the way to write 
equation (3). This is not only due to the early development stage of the technique, but also 
reflects substantial differences in the theories. In practice the actual closed form expression 
for y(’)(r, k )  involves the summation over many angular momentum partial waves and the 
phase shifts for the central and back-scattering atomic potentials. A full account of the most 
efficient present schemes to calculate the y(’)(r, k )  function will be reported elsewhere [9]. 
The formalism presented in this paper is rather general, adaptable to further theoretical 
improvements, and directly capable of relating the ~ ( k )  signal to the quantities familiar to 
the distribution function theory in disordered matter. 

Due to the oscillating character of the ~ ( A F S  signal, with a typical frequency in k space 
twice the distance r of the neighbour, y”)(r, k )  is usually written as 

y(*)(r, k )  = A(k ,  r )  sin(2kr + @(k ,  r ) )  (4) 
where the amplitude and phase functions are now smoother functions of either k and r. 
Notice that the leading phase term has a %r dependence whereas the equivalent quantity 
in equation (1) is kr ,  for this reason the E m s  k is approximately equal to twice the 
diffraction k .  In the plane wave approximation the phase function @(k, r )  is linear in k and 
does not depend upon r ,  and for this reason simplified equations are often found, but since 
spherical wave effects are recognized as important [IO] we prefer to use the most general 
expression (4). 

In spite of the infinite apparent upper integration limit in (3) the sensitivity of the x ( k )  
oscillations to the surrounding structure is actually limited to the neighbourhood of the 
photoabsorber atom. This is due to two main limiting factors; the first is a simple r-’ 
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spherical decay of the intensity of the interference effects and the second is the presence of 
a finite mean free path A for the photoelectron that generates a further exponential damping 
term, that eventually dominates.*The typical range of the EXAFS structural information is in 
practice contained within 5-10 A from the photoabsorber atom. In the present notation the 
amplitude function actually contains the damping factors that are often written as 

A(k, r) = - '2;) exp(-r/A(k, r)). (5) 

Equation (5) was particularly convenient in the plane wave approximation where f (k, r )  = 
f (k), but since modem theories are more complicated we prefer to use a more general 
expression. Also the A(k, r )  term in the modern schemes, that use a complex potential, 
is not the simple electron mean free path. It actually comes out as an atom dependent 
energy and distance dependent function. The action of the exponential term is in any case 
very important since it actually operates as a convergence factor in the integral of equation 
(3). This produces a substantial difference between the structural information contained in 
the S(k) and in the X(k) functions. In x(k) there is an enormous weight on the shortest 
interatomic distances occurring in the system,'but there is no sensitivity to the gz(r) long- 
distance tail. A noticeable experimental consequence of the short-range sensitivity is that 
the typical XAS spectra hardly change upon melting of the specimen. This is usually true for 
monatomic systems with a few exceptions. One of these is represented by c-Ge that above 
the melting temperature becomes a metallic liquid with a dramatic change in the average 
local arrangement [ 1 I]. 

There are further exaemely important conceptual differences between equation (1) and 
(3). In the latter there is no contribution from the space region between r = 0 and r = r ~ "  
the shortest interatomic approach distance. This distance range is instead essential in the 
former to give the appropriate S(k) behaviour. Moreover, there is no equivalent for the 
x(k) of the well known compressibility limit for the S(k) that provides a fundamental sum 
rule for the gz(r) 

z PkT dr = - lim S(k) = 1 + 4np 
k-0 B (g*(r) - I)r 

where kT is the isothermal compressibility and B = l /ksT as usual. The lack of such an 
equivalent property is certainly one of the main reasons for the difficulty of analysis of the 
x(k) information in disordered system. From all the previous consideration it is clear that 
the inversion of the structural information in the EXAFS signal is not able to provide the full 
gz(r) distribution. 

2. Previous EWS investigations 

EXAFS has been widely used to provide local information on the gz(r) of disordered systems 
typically including the coordination numbers, average distances and variances of shells of 
atoms surrounding the photoabsorber. There have been a large number of papers devoted to 
the problem of how to handle the configurational average of equation (3) in highly disordered 
systems. Eisenberger and Brown 1121 first pointed out the effects of highly asymmetric 
peaks occurring in disordered systems. A large number of careful investigations have also 
been performed on superionic conductors by Boyce and co-workers [13] and methods have 
been devised to tackle highly disordered systems and possibly asymmetric peak shapes 1141. 
Several studies dealing with actual spectra of liquid systems [15] have posed the problem 
in the correct framework equivalent to equation (3). 
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Many EXAFS investigations on disordered systems assume that the signal is sensitive 
to the 'first coordination shell' of neighbours only. Under these conditions equation (3) 
reduces to the configurational average over a broad and usually asymmetric peak. An 
exact analytical method to account for spherical wave effects in the configurational average 
has been developed by Brouder [16] and generalized to multiple-scattering contributions 
[17]. In recent papers the average is often performed in the framework of the cumulant 
expansion method [18, 141, where amplitude and phases are fitted with even and odd Taylor 
expansions in k = 0 respectively. The difficulties and the limitations of this and connected 
approaches have been widely discussed [141. In particular it is found that the lack of low& 
data represents a major limitation on the possibility of obtaining reliable peak shapes. We 
point out that due to the intrinsic differences between equation (3) and (1) discussed above 
the missing low4 EXAFS data do not necessarily play the same role as the low4 S(k)  data. 
A method has been developed [19] to extrapolate the ~ ( k )  signal to k = 0 based on the 
cumulant expansion approach. In this way it was possible to apply directly the Fourier 
inversion algorithm to the EXAFS data providing a model free. determination of the gz(r). 
Again, the intrinsic limitations of the method were clearly stated [19] and the reported 
applications were limited to disordered crystal examples with a very little insight on the 
real gz(r)  determination problem. 

A general problem that has certainly to be clarified is how to compare first-shell peak 
information provided by EXAFS with complete gz(r )  functions derived from S(k) data. In a 
paper dealing with m s  measurements of solid and liquid Pb [20], it has been found that 
the EXAFS coordination actually drops by a factor of 0.5 upon melting. This occurrence is 
clearly in contrast with diffraction results [Zl] where liquid Pb is found to have a simple 
liquid behaviour with a close packing arrangement associated with typical coordination 
numbers in the range 10-13 that should be quite comparable with the local structure in a 
high-temperature FCC solid. The explanation provided by the authors [ZO] was that it is the 
atomic diffusion present in the liquid structure that hampers a large number of neighbours 
from contributing to the EXAFS signal. In our opinion these results and considerations 
can be misleading. In any case ~ ( k )  probes the instantaneous position of the surrounding 
atoms and the actual experiment on a multiatomic sample depends on average equal-time 
properties and is perfectly described by equation (3). 

For the benefit of the scientific debate and the cross-fertilization between different 
research fields involved in studies of disordered matter, a clarification of the actual sensitivity 
of EXAFS to gZ(r) is certainly required. The main purpose of the present report is indeed 
to provide such an insight on the basis of simulations and examples. 

3. Short-range sensitivity of x(k)  

The system that has been chosen as an example is liquid copper. Radial distribution 
functions of I-Cu have been obtained by either neutron [22] or x-ray diffraction [23] and 
the tabulated gZ(r) functions [21] will be used for the present purpose. In order to simulate 
the signal that an hypothetical E M S  experiment would detect we calculated the y(')(k, r )  
function for Cu-Cu and performed the integral in equation (3). For the reader's convenience 
the kernel yQ)(k,  r )  for discrete values of r ,  from 2.0 A to 4.5 .& in steps of 0.1 A, is reported 
as a function of k in figure 1. The short-range nature of the yP'(k, r )  function is evident. 
In the discretized integral calculation each y(')(k, r )  function has been multiplied by the 
number of atoms associated with the corresponding element dN = 4nprzgz(r) dr. After 
multiplication by dN it is found that the intensity remains,quite high even at the distance 
of 8 .& from the origin atom. But, as a result of the configurational average almost any 
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high-frequency contribution is washed out and the average signal substantially resembles a 
damped version of a lowdistance shell. Some care has to be taken to perform numerically 
the integral (3). In fact while the short-range nature of the kernel certainly allows us to 
enforce a maximum distance cut-off, this should be smooth to avoid termination ripples. 
We found it efficient to truncate the integral with half Gaussian window starting in the range 
6-10 A with a standard deviation of 0.5-1.0 A. 

. .  
Figure 1. EXAFS kernel v(21(k. r )  calculated for various values of r from 2.0 A to 4.5 b. in 
steps of 0.1 A. as a function of k ,  for the Cu-Cu pair. The c w e s  are displaced by 0.05 units 
along the ordinate axis. Notice the short-range nature of the function. 

In order to ascertain the sensitivity of the EXAFS signal to possible differences in the 
g&) we used the available gz(r) data at two different temperatures and calculated the 
corresponding x ( k )  signals. These results are shown in figure 2. Panel (a) contains the two 
model gz(r) functions used in the present simulations: they refer to liquid copper at 1150 “C 
(solid curve) and at 1300 “C (dashed curve) 1211 respectively. In panel (b) the corresponding 
S(k) ,  obtained by integrating gz(r )  according to equation (I), are shown. We notice that the 
slight sharpening of the first-shell peak produces weak effects on S(k), as expected. The 
effect on the EXAFS signal, shown as k x ( k )  in panel (c) is however much stronger. The main 
oscillation around k .=s 5 A-’ is reduced by nearly 50% for the predicted higher-temperature 
spectrum. This comparison epitomizes the short-range sensitivity of the EXAFS technique. 
Finally panel (d) shows the effects of a typical Fourier transfonnation (FT) of the simulated 
EXAFS data which is usually applied to judge at a qualitative level the frequency content 
of the spectra. The magnitudes of the Fr data ( F ( r ) )  show a relatively narrow frequency 
contribution centred about the short-distance cut-off of the gz(r) distribution r X 2 A. In 
practice the resulting averaged x (k )  signal resembles a damped version of a lowdistance 
shell contribution. 

The presentation of this simple example clearly shows the complementarity between 
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Figure 2. Example of the short-range sensitivity of the MAPS signal: (a) g&) functions for 
I-Cu at 1150 OC (solid line) and 1300 ' C  (dashed line). labulations detived from an x-ray 
diffraction experiment 1211 (b) corresponding S(k)  functions, (c) corresponding k x ( k )  spectra 
(d) magnitude of the Fourier vansform (F ( r ) )  of the k x ( k )  data. Notice that the WAFS signal 
is strongly sensitive to slight differences in the first .&) peak whereas the S(k) functions are 
almost indistinguishable. Notice also that the frequency content of the kx(k )  specIra corresponds 
to the first rise of the first peak of p z ( r ) .  

x(k) and S(k) data. The x ( k )  contains unique information on the short-range order and 
might be used to define precisely the shape of the rise of the first gz(r )  peak in a disordered 
system. If the comparison of figure 2 were done between two gz(r )  data differing, let us 
say, in the region r > 5 A no difference in the x(k) signal would have probably been 
detected, while S(k) would have been largely modified. In fact, beyond a certain distance, 
as apparent from equation (5),  the x (k) is not even sensitive to the presence of the atoms. 
For this reason the EXAFS data analysis is often limited to the first-shell data only, and 
longer-distance contributions are actually neglected. 

If our aim is the derivation of the gz(r)  of an unknown system it is clear that while a 
diffraction experiment alone might provide the answer, the E M S  is hampered in the task. 
However, it is also clear that a diffraction experiment might be nicely complemented with an 
EXAFS experiment on the same system. Vice versa, an EXAFS experiment with some external 
input on the gz(r ) ,  possibly coming from diffraction data or computer simulations might 
certainly provide an interesting insight as well. All of these considerations widely stimulate 
the developments of suitable algorithms that use the combined information from S(k)  and 
x(k) data. A substantial step forward along this line of research might be represented by 
the development of the RMC method 141, that has already been applied to the EXAFS data 
analysis [24]. Another promising approach can be based on the use of regularized inversion 
algorithms [25]. 
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4. Combining x ( k )  and S(k)  data 

842 1 

A simple and efficient method to combine EXAFS data with extemal information on gz(r) 
was proposed by our group, and has been applied so far to the study of liquid Hg 1261, to 
the hydration shell in aqueous solutions of Br- and of brominated hydrocarbon molecules 
[27], and to liquid Ge 1111. 

This method, which will be described in full detail, is also useful, in our opinion, to 
clarify the role of the complementarity between x (k) and S(k). We recall that any reasonable 
model for g&) should satisfy the long-range behaviour equation (2) and the compressibility 
sum rule equation (6). For incompressible systems the latter equation simply states, in the 
thermodynamic limit, that integrating out the 4npr2gz(r) function one should obtain exactly 
the number of atoms predicted by the average density of the system. This sum rule has a 
slight correction due to the density fluctuations in compressible systems, as is well known. 
Now even if gz(r) were completely unknown it is a nonsense to try to fit the EXAM spectrum 
of a disordered system with a model gz(r) which does not obey these constraints. Into this 
class clearly fall all the attempts to account for a single coordination shell, that unfortunately 
are quite common in EXAFS. The argument often quoted to support the single-shell model 
is that the spectrum does not contain enough information to fit more than one shell [28]. 
Our objection is, in fact, that accounting for the correct limit and the sum rule is not fitting 
additional parameters, it is just starting from the appropriate baseline that is certainly not 
gz(r) =.O as usually assumed. 

The ~ ( A F S  data analysis that we therefore propose for disordered solids or liquids is 
to s m t  with a model gF(r). This model can be possibly obtained from simple theoretical 
arguments, molecular dynamics simulations, Monte Carlo simulations, or S(k) data; what is 
important is that it is realistic and obeys equation (2). and equation (6). Then the appropriate 
use of EXAFS data is made refining the model, while keeping (2) and (6) valid. Equation 
(2) implies that the modification of the model should not extend to infinite range, that is 
quite natural since EXAFS is not sensitive to the long range. In general the difference AS(k) 
induced by a difference A&) = gz(r) - gT(r)  can be expanded in Taylor series about 
k = 0: 

1 0 [ 2! 3 4! 5 
m k 2 r Z  k4r4  

e 4 n p  J rZAg2(r) I---+--+ ... dr. (7) 

The compressibility sum rule thus provides an interesting constraint to the zero-order term 
of (7). namely Agz(r) should satisfy 

4irp rz A&) dr = 0. (8) 
0 

In other words the total refined coordination number must not change in the procedure. 
Further constraints might be obtained requiring that bigher-order terms of the Taylor 
expansion in k = 0 remain constant in the refinement. For instance: 

This constraint requires that the second moment about r = 0 of the short-range probability 
distribution of finding atoms at distance r should not change. The application of equation 
(8) and possibly equation (9) can be accomplished in several ways. A trial short-range 
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A&) function, that can assume both positive or negative values satisfying (8) and possibly 
equation (9). might be refined in the procedure. Another equivalent way, described in the 
previous applications [26, 27, 11 J consists in decomposing the gF(r) into a certain number 
of short-distance peaks (possibly one or two) plus a tail. In the refinement, involving only 
the short-distance peaks, their total coordination number is kept fixed. In this way it is also 
guaranteed that gz(r) > 0 by constraining each coordination number to be non-negative as 

As an example, if the refinement involves a single peak described by the four parameters 
N ,  coordination number, R, mean position, U', variance and j3, skewness, equation (8) 
requires that AN = 0, and equation (9) that A(R2+u2) = 0, leaving only two independent 
parameters. In the case of the refinement of two asymmetric peaks with parameters NI, RI, 
U:, j31 and Nz, Rz, U;, j32, respectively, the constcaints are 

(10) 
The application of this method has proven successful in the EXAFS data analysis of disordered 
systems, and refined gz(r) functions could be derived. Clearly the validity of the long-range 
shape of the &(r) is based on the quality of the starting model. 

' well. 

A(NI + N2) = 0 A [NI (R: + 0;) + Nz(Rz +U;)] = 0. 

5. Application to liquid Pd 

An E x M S  spectrum of liquid palladium (1-Pd) at 1870 K has been recently recorded in 
the framework of an extensive project to study condensed phases of Pd 1291 at high 
temperature. The measurement was performed at the D44-xAs4 beamline (LURE, Orsay, 
France) equipped with a Si(3 11) double-crystal monochromator. The high-temperature 
measurement were performed using a recently developed technique for x-ray absorption 
studies [30]. In the present paper the spectrum of liquid Pd is used to provide an effective 
example of the potential of application of EXMS, in the framework of the present theory, 
to investigate simple liquid systems. 

Liquid Pd was measured by x-ray diffraction [31] and the measured S(k) and calculated 
gz(r) have been tabulated [XI. The tabulated gz(r) for 1-Pd at 1580 "C will be assumed as 
the starting model gF(r). An example of decomposition of the model into two short-range 
peaks and a long-distance tail is presented in figure 3. In principle any decomposition is 
perfectly equivalent, the total $(r)  being the only physical quantity. In practice, however, 
the short-distance peaks should be modelled by using some distribution for which an analytic 
expression of the EXAFS damping can be worked out, and the tail should be placed to large 
enough r values that its signal is negligible. In this case we have used a set of four- 
parameter gamma like distributions, as described elsewhere [27]. Each model peak is 
completely defined by the coordination number N ,  average R, variance U' and skewness j3. 
It should be noted that due to the asymmem their modal value does not generally coincide 
with R. The algorithm used to calculate the damping of the signal inbinsically accounts 
for the spherical wave effects. It differs from the one proposed by Brouder [16] because it 
is based on numerical calculations of the derivative of amplitude and phases [32, 91 rather 
than on the analytical approach. 

The total ExAFS signal associated with the starting model gF(r) is compared with 
the experimental data in figure 4. We wish to stress that the EXAFS oscillation is clearly 
detectable up to k % 10 A-' corresponding to about k = 20 A-' in the diffraction scale, 
whereas the x-ray diffraction S(k)  data [31] are limited to k sz 12 A-' only. While the 
amplitude of the simulated signal has the right magnitude, its phase is clearly in disagreement 
with experiment. The origin of the k scale has been chosen in agreement with the analysis 
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Figure 3. The g2(r) of 1-Pd determined by x-ray diffraction data: decomposition into two 
short-range peaks and a long-range tail. 

of Pd foil spectra (data available from room temperature to just below the Pd melting point) 
where structural results in agreement with the known Pd-Pd distance have been obtained 
[331. In the present context we will not investigate the origin of the discrepancy, it is 
likely however that it is due to experimental systematic errors in one or possibly both the 
experiments. We recall that measurements on condensed matter under extreme temperature 
conditions are in any case extremely difficult. 

-0.10 " " I " " I " " I ' " ' I ' " ' I 1 '  " 

2 4 6 8 10 12 14 

k (;-I) 

Figure 4. Calculated kx(k)  signal for fhe gz(r)~of I-Pd determined by x-ray diffrahon (solid 
line) compared with the WAFS experiment [ZS] (dots). 
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Figure 5. Fitting of the experimentaJ I-Pd WFS data. From top to bottom: fim peak. second 
peak and tail contributions, comparison between experimental data (dots) and total model signal 
(solid curve) and experiment minus model residual difference. The fining is excellent. 

We focus here on the fact that the staaing model has to be refined. The refinement is 
performed following the previously described criteria varying the parameters of the first two 
peaks but always satisfying the constraints of equation (10). The final results are shown 
in figure 5. The first three curves from the top represent the contributions from the first 
peak yf), second peak y:) and tail y:) respectively. The fixed tail signal is in anycase 
negligible, also the second-peak signal is negligible, but its parameters have been refined in 
order to accompany the variation of the first-peak parameters which are, however, critical. 
The successive curves represent the comparison between total model signal (solid line) and 
the experiment (dots); the agreement is spectacular and the residual (bottom) is dominated 
by experimental noise only. 

The refined model &(r) is shown with its three components in figure 6 and it is compared 
with the starting model. Clearly in order to improve the agreement from figure 4 to figure 
5 the first-peak parameters had to be changed. In particular, the phase difference evident 
in figure 4 required a shift of the first peak by about 0.15 A in r space. Notice that the 
maximum of the first &(T) peak is now at 2.8 A whereas that of the initial model was at 
z2.62 A. Needless to say that this rather large bond length expansion, required to account 
for the EXAFS oscillation, induces suspicion also of the reliability of the long-range tail of 
the model that for a close packed liquid is liiely to be expanded as well. This possible error, 
however, does not affect the reliability of the short-range part of the refined g2(r) shown in 
figure 6. In fact the WAFS sensitivity to the short-range structure makes the refined g2(r) 
quite reliable up to w3.5 A. In addition the whole model is in any case consistent with the 
required long-range behaviour and sum rule property any radial distribution function should 
obey. 
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Figure 6. Optimized gz(r) function for 1-Pd lhat is able to fit lhe ~ A F S  data (solid line), 
compared with the original model (dottedline), the two separate refined peaks and the fixed '$1 
mnbibutions are reported as dashed lines. The optimized g*(r)  is reliable up to about ~3.5 A, 
the range of sensitivity of the WFS technique. 

6. Conclusions 

The results presented in this paper have a certain number of implications for the general 
understanding of the EXAFS signal in highly disordered systems. 

(1) First of all the complementary nature of the structural information contained in S(k) 
and ~ ( k )  functions has been widely emphasized with direct examples. In particular the 
nature of the EXAFS signal has been clarified in terms of quantities familiar to the theory of 
simple liquids. 

(2) Secondly it has been shown that, contrary to what is commonly believed, it is 
possible to analyse and interpret w(AFS data on liquid systems (or of highly disordered 
condensed matter in general) in the correct framework of the radial distribution function 
theory. The erroneous results obtained in the past for liquid Pb [20] are attributed to the 
failure of the single-shell fitting procedure, even in the version of the cumulant expansion 
method [18]. Successive developments along this line 1191 did not prove capable of deriving 
radial distribution function information, in spite of the sfxong claims. 

(3) As a thiid result the importance of refining E M S  data using realistic gz(r) models 
satisfying both long-range asymptotic behaviour and the compressibility sum rule has been 
stressed, and a practical method to perform this refinement has been proposed. It has been 
found that the compressibility sum rule can be @anslated into constraints on coordination 
numbers and higher even-order moments of the refined short-range atomic probability 
density 4rrrzAgz(r). These constraints overcome the difficulties present in the single-shell 
EXAFS fining due to the correlation between N and U' parameters, from which unphysically 
low coordination numbers N may result [ZO]. The proposed method is able to provide 
reliable gZ(r) shapes in the short range (up to 3.0-4.0 A), that is, in the region of sensitivity 
of the ExAFS signal. The reliability of the long-range tail of the refined gz(r) relies on the 
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accuracy of the original model. 
(4) The method has been applied to a real case of recent E M S  measurements of liquid 

Pd, providing a reliable gz ( r )  shape up to a distance of ~53.5 A. In this specific case, 
it is apparent that the starting model was not correct, in fact a rather large bond length 
expansion was required to account for the EXAFS oscillation. Although the purpose of this 
paper was not to discuss the relevance of these findings for the structure of Pd phases at high 
temperature, it is worth mentioning that the equilibrium crystallographic Pd-Pd distance at 
room temperature is about 2.75 A. We estimate, therefore, that it is very unlikely that this 
distance undergoes a contraction in the liquid phase at 1580 "C as the diffraction data [31] 
would suggest. The refined gZ(r) on our E M  data instead presents a maximum at 2.80 
8, that is perfectly compatible with the crystallographic results at room temperature and the 
expected thermal expansion. 

(5) All these findings demonstrate that structural E M S  investigations of liquid systems 
under extremely high-temperature conditions might play their own role in the determination 
of pair correlation properties of even simple liquids. They stimulate further experimental 
efforts in collecting reliable high-temperature EXAFS data on liquid specimens and point 
out the strong complementarity between diffraction and MAFS data. The development of 
suitable methods able to exploit the combined structural information contained in S(k) and 
x ( k )  data is also strongly encouraged. 

The present report cannot be concluded without warning the reader that the real situation 
is rather more complex than what is presented here. Indeed the EXAFS signal is not 
only dependent on the pair correlation properties [9]. There is a further higher-order 
connibution arising from coherent multiple-scattering effects that makes the x(k )  also 
sensitive to niplet and possibly higher-order correlations [34]. The presence of these 
signals and their importance even in spectra of disordered solids and liquid systems has 
been widely emphasized by our group [34,26,35, 111. It is exactly this sensitivity to triplet 
correlations that has stimulated a wide interest in the understanding of the EXAFS signal and 
its possible applications to derive unique structural information on short-range features of 
the rz, 6) distribution. No further progress in this field can however be made without 
a clear understanding of the pair information contained in the ~ ( k )  signal which the present 
contribution has been trying to shed light on. 
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